
www.immunityinc.com

Beyond Fast Flux: Parasitic 
Command And Control 

Networks in the Near Future



Agenda

● Problems of scale when hacking
– Client-sides 

● Immunity's PINK Framework
● Trojaning hard targets

– Immunity Debugger Parasitic Infection



Targets are ephemeral

● Time
– Your workstation turns on and off as you come to 

work

● Location
– Your laptop travels across network security 

boundaries

● Configuration
– Your server is upgraded, reconfigured, network 

infrastructure changes around it



Command and Control in most 
hacking platforms is a tree

Attacker

Target 1

Target 2 Target 3



Networks are not trees

● A fully connected graph is what we want
● Self routing with some human input

● This is a hugely expensive solution
●Management costs
●Development costs

●Need to emulate TCP over thousands of 
protocols

●Those who don't use TCP are doomed 
to re-implement it...



Building and storing routing tables is 
a hard problem

● Harder for us due to covertness 
● We don't want any node to have a larger picture 

of all the other owned nodes than it absolutely 
has to

● Automatic solutions are possible, but for now, 
manual operation of routing is easiest



Scalability problems

● Management of one hundred ants is easy
– Picture of thirty million ants

● A good client-side vulnerability can be 
used to own a quarter million boxes a day

● Future work involves self-directed worms



Asymmetric attack means we 
need to not have a rack of 

machines
● Portable C&C
● Scalable C&C
● Covert C&C
● Immunity's PINK infrastructure solves these 

problems



Current Botnet C&C technology

● IRC
● HTTP to single server
● Fast-Flux of DNS Servers
● Storm P2P protocols



Covertness or Reliability?

● P2P is reliable, not covert
– Requires chatty communications on the network

– Difficult to pass through strict proxies

– Easily fingerprintable



PINK C&C Framework

C&C

Listening Posts

Targets

Dead Drops

Blog/Web/News
Searchers



Blogsearch

● Blog searching is the current best parasitic host 
protocol for PINK
– Almost instantaneous responses

– Easy to find hosts for our blogs

– Lots of signal to hide in

● Any search engine will do though



PINK DEAD DROPS
● <Cover Text>

● <TRIGGER>

● <base 64><RSA Encrypted/Signed 
Command></base64>

● <END TRIGGER>

● <More Cover Text>



Each Target is looking for 
multiple triggers

● Goal is to divide our targets into manageable sets

– Per Country

– Per Company

– Per Domain

– Per Time-of-exploit

– etc
● “All hosts from immunityinc.com” please contact 

listeningpost.my.com using HTTP MOSDEF on port 443

● All target.com's please deliver any .xls with “Payroll” string to 
email address bob@example.com



Signed and Encrypted payloads 
prevent replay attacks with 

removal kits
● Triggers need to be signed with time-based key 

as well
● Making triggers strings of random words makes 

it hard for search engines to filter our requests



Client-side conclusions

● Currently in Beta-testing state – pushing out to 
CANVAS shortly

● Parasitic C&C is:
– Nearly impossible to detect and monitor

– Easily re-targetable to any search engine or search 
option on a web page

– Does not require expensive infrastructure to 
maintain



Servers and hard targets

● Servers may not be able to contact us via 
HTTP

● Need way to connect to stationary targets 
behind firewalls and application proxies covertly

● Each target is different!
● Example target: MS SQL Server 2005 in strict 

DMZ tier



Every web application is a unique 
snowflake

Attacker Firewall+IPS+Reverse HTTP Proxy+Load Balancer

Web Servers

FirewallApp ServersFirewall

Database we Control



Custom automatic backdoors

● Use Immunity Debugger to analyze target 
.exe/.dll

● Send traffic to it and trace where our triggers 
are seen

● Create custom patch to PINKize target .dll and 
write this to disk and memory

● Box is now trojaned in a way that does not 
require direct connectivity!



Why Immunity Debugger?

● Includes built in analysis engine
● Full Python scripting API can do both dynamic 

and static analysis
● Send data to the server and then see what API 

it triggers
● Mutate our parasite to look statistically like the 

target program
● Trojan in memory or on disk or both



Avoiding 
Structural BinDiff

● Change all CALL opcodes to point to our 
dispatcher

● Have dispatcher send hooked API's to our code 
instead

B C

D

A

E

Disp.

B C D EA



Overall Conclusions

● Botnets and trojans will be extremely difficult to 
find and analyze in the near future.

● Nascent market shift to automated incident 
response as part of vulnerability analysis faces 
ongoing challenges as attackers build one-time 
custom-use trojans


