Beyond Fast Flux: Parasitic Command And Control Networks in the Near Future

www.immunityinc.com

IMMUNITY

Agenda

- Problems of scale when hacking
 - Client-sides
- Immunity's PINK Framework
- Trojaning hard targets
 - Immunity Debugger Parasitic Infection

Targets are ephemeral

Time

Your workstation turns on and off as you come to work

Location

Your laptop travels across network security boundaries

Configuration

Your server is upgraded, reconfigured, network infrastructure changes around it

Command and Control in most hacking platforms is a tree

Networks are not trees

- A fully connected graph is what we want
 - Self routing with some human input
- This is a hugely expensive solution
 - Management costs
 - Development costs
 - Need to emulate TCP over thousands of protocols
 - Those who don't use TCP are doomed to re-implement it...
 IMMUNITY

Building and storing routing tables is a hard problem

- Harder for us due to covertness
- We don't want any node to have a larger picture of all the other owned nodes than it absolutely has to
- Automatic solutions are possible, but for now, manual operation of routing is easiest

Scalability problems

- Management of one hundred ants is easy
 - Picture of thirty million ants
- A good client-side vulnerability can be used to own a quarter million boxes a day
- Future work involves self-directed worms

Asymmetric attack means we need to not have a rack of machines

- Portable C&C
- Scalable C&C
- Covert C&C
- Immunity's PINK infrastructure solves these problems

Current Botnet C&C technology

- IRC
- HTTP to single server
- Fast-Flux of DNS Servers
- Storm P2P protocols

Covertness or Reliability?

- P2P is reliable, not covert
 - Requires chatty communications on the network
 - Difficult to pass through strict proxies
 - Easily fingerprintable

PINK C&C Framework

Blogsearch

- Blog searching is the current best parasitic host protocol for PINK
 - Almost instantaneous responses
 - Easy to find hosts for our blogs
 - Lots of signal to hide in
- Any search engine will do though

PINK DEAD DROPS

- <Cover Text>
- <TRIGGER>
- <base 64><RSA Encrypted/Signed Command></base64>
- <END TRIGGER>
- <More Cover Text>

Each Target is looking for multiple triggers

- Goal is to divide our targets into manageable sets
 - Per Country
 - Per Company
 - Per Domain
 - Per Time-of-exploit
 - etc
- "All hosts from immunityinc.com" please contact listeningpost.my.com using HTTP MOSDEF on port 443
- All target.com's please deliver any .xls with "Payroll" string to email address bob@example.com

Signed and Encrypted payloads prevent replay attacks with removal kits

- Triggers need to be signed with time-based key as well
- Making triggers strings of random words makes it hard for search engines to filter our requests

Client-side conclusions

- Currently in Beta-testing state pushing out to CANVAS shortly
- Parasitic C&C is:
 - Nearly impossible to detect and monitor
 - Easily re-targetable to any search engine or search option on a web page
 - Does not require expensive infrastructure to maintain

Servers and hard targets

- Servers may not be able to contact us via HTTP
- Need way to connect to stationary targets behind firewalls and application proxies covertly
- Each target is different!
- Example target: MS SQL Server 2005 in strict DMZ tier

Every web application is a unique snowflake

Custom automatic backdoors

- Use Immunity Debugger to analyze target .exe/.dll
- Send traffic to it and trace where our triggers are seen
- Create custom patch to PINKize target .dll and write this to disk and memory
- Box is now trojaned in a way that does not require direct connectivity!

Why Immunity Debugger?

- Includes built in analysis engine
- Full Python scripting API can do both dynamic and static analysis
- Send data to the server and then see what API it triggers
- Mutate our parasite to look statistically like the target program
- Trojan in memory or on disk or both

Avoiding Structural BinDiff

- Change all CALL opcodes to point to our dispatcher
- Have dispatcher send hooked API's to our code instead

Overall Conclusions

- Botnets and trojans will be extremely difficult to find and analyze in the near future.
- Nascent market shift to automated incident response as part of vulnerability analysis faces ongoing challenges as attackers build one-time custom-use trojans

