I20MGMT Driver Impersonation Attack

Justin Seitz

justin@immunityinc.com
Immunity Inc. 2008

Introduction

This paper stems from the notes, and general pain | had to go through in order to write the exploit for
the i2omgmt.syslocal privilege escalation attack. This vulnerability was reported by iDefense and
discovered by Reuben Santamarta, and it is not your typical kernel-mode overflow which makesit a
unique bug (hence the paper).

Let's take alook at the advisory and see what we can find, and then we will walk through the steps that
| took in order to get a proper local privilege escalation attack working. The advisory
(http://Iabs.idefense.com/intelligence/vul nerabilities/display.php? d=699) mentions a couple of key
pieces of information:

- adevicename \.\\I20Exec
- wearegoing to use an IOCTL to send information to the device
- wecanforgeaDEVICE OBJECT at some point

Now that we have some basic information on the bug we are hunting down, let's start figuring out
where the vulnerability lies.

NOTE: | am leaving out significant portions of the dynamic analysis that was done for brevity's sake.
Aswedll, | already assume that you are aware of how to send IOCTLsto device drivers, and all of that
jazz.

Finding the Bug

Thefirst step isto determine what IOCTL call looks like it is going to be useful to us, warm up your
favourite disassembler and crack open i2omgmt.sys

NOTE: If you don't have thisin C:\WINDOWS\system32\drivers then unpack it from
C\WINDOWS\Driver Cache\i386\sp2.cab then reboot.

I use Immunity Debugger for doing the driver analysis throughout, so installing it from
http://debugger.immunityinc.com may be a good ideafor following along. Aswell, in the figures
displayed | didn't have room to include any decoding information, so using the debugger to follow
along will show you quite abit more detail than what my word processor permits.

http://debugger.immunityinc.com/
http://labs.idefense.com/intelligence/vulnerabilities/display.php?id=699

The first thing we need to find is the primary dispatch function for handling IOCTLsto this device. The
entry point of the driver isshown in Figure 1:

EDI,EDOI

cenl.kKeTickCount x]

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 1: i2omgmt.sys entry point.

Nothing amazing here, does some setup then unconditionally jumpsto 0x0001 0FAC. Let's head there
and in thefirst basic block we will see a key piece of information, Figure 2 shows the code:

OWoRD
OuoRD
oL DWaRD
Oy OWoRD
* OWORD

- SHORT (2o

Figure 2: Function pointer setup at 0xXO0010FCE for IOCTL dispatch.

Theinstruction at 0x00010FCE:
MOV DWORD PTR DS:[ESI+70], i2omgmt.00010D6C

is setting the function pointer for handling IOCTLs for the I20Exec device and it is here that we have

to begin our investigation. When we disassembl e the first basic block of the dispatch function (Figure
3) we seethe first IOCTL code calculation at 0x00010D9A:

Mau EOT, EOI
“H EEF

OWoORD PTR DS: CEE:

E
EDI
! EOI,
SI,OWORD PTR DS:CEDI+eE]
OWaRD PTR OS: [ESI+C]

1@
16
16
1@
16
1@
16
16
1@
16
16
1@
16
1@
16
16
lan
160
1@

Soat 0x00010D9A itissubtracting 0x222E80 from our IOCTL code and if we look further into the
function code we see that from there it continues subtracting our IOCTL code until it determines what
action to take (of course oncethe IOCTL code calculation is equal to zero). Thisisaclassic switch
statement, and is the most common way for IOCTL dispatch routines to handle separate IOCTL calls. If
you are viewing this under the debugger, full switch decoding will be available. We will briefly revisit
thislater in order to send the proper IOCTL code to trigger the bug.

Before we start tearing through al of the possible IOCTL codes in the dispatch, let's first have a quick

glance at al CALLsthat can occur that are aresult of a specific IOCTL code. We can then determine
the various exit points for the IOCTL codes and begin trying to track down the vulnerability.

Highlighting the 0x00010D9A function, and then hitting CTRL+K in Immunity Debugger will show
usacall tree as show in Figure 4 below:

=10 |

Called from | Procedure Comment -

rSinglelbjer

Figure 4: Call tree from IOCTL dispatch.

Investigating the first procedure (12 0mgmt . 001032 6) in the disassembler quickly showsusthat it is

alogging function (complete with a DbgPrint() call for us who are debugging). We aren't interested in
this particular function call for our purposes so we move on. Investigating the 1 2omgmt . 0001 06EC
procedure we find something alittle more interesting, let's ook at the new call treein Figure 5:

=101 |

Called frol ComMMEnt &
icomamt . BEE1E

g lelbject

1trolRequest

aq
1 LWithTag

Figure 5: Call tree from procedure iZomgmt.000106Ec

We see a call to the aforementioned logging function, and anew call to i12omgmt.00010386. Let's
take alook at this function:

HEALAZZE 5 SBFF MOU EDI,EDI
EaEalazss | . 55 FUSH EEF

HEALAZSS | . MOU EBF, ESF

BEAlAIsE | . 5 FUSH ECx

saaiazac | . FUSH ECH

aaalazan | . a3 MOL ERR,

HEALAZ9E | . 28 MO ERA, OWORD PTRE D0S: [ERX+232]
HEALRAZ9S | . FUSH EE®

HEAL1EZ94 | . #lF EBAX,EBA

HEALAZ9G | . EC CHP EBH
HEALEZ99 | . SHORT iZomarmt . B8E183R2
HEALIEZOE | . B2 CHEREECAH MOU ERRA, CEREEECEH

BaA1EzAE | . EB 72 SHORT i2omamt.B@8E18414
HEALAIAZ = FUSH ESI

saaiazAs | o 2078 14 LEA ESI,DWORD PTRE DS:[ERX+141
HEALAZAS | . 56 FUSH ESI

EEElEazAy | o FFLIE 22126168 OWORD PTR DS:[<&ntoskonl.keClearEvent =]
EaAiazA0 | . MO ERA,

HEE1a3Ea | . MO EQE, DWORD PTRE DOS: [EAX]
HEALAZES | . MO ECH, OWORD PTR DS: [ERX+1321]
HEE1ASES | . HOD ECH, EDOE

HEALIAZET | . LEA ED=,

HEE1EZEA | . FUSH EDX

HEALIAZEE | . FUSH ESI

Baalasec | . EBX

HaA1EaIen | . ECH

HEALRAZEE | . ERX

HEALAZEF | . ECH

HEALAICH | . ERX

EaAiazcl | . FFPS AC F

EEA1EICE | . 623 BESDEE4EA 40EaEs

HEAIAZCS |« FF15 241281668 OWoRO PTR DS:[<&ntocskrnl.IoBuildhDeviceloControlRequest =]
EEAELIAICF | . 3BC2 CHF ER&,EBE=-

gaaiaznl | . FS 8¢ SHORT iZ2omamt . 88E18230A

EEE1EZ02 | . B2 SHEEEECA MOL ERRA, CEREEESH

gaaiazne | . SHORT i2omamt.B8E18413

HEAL B30 MO ECH,

saaiaznon | . 57 FUSH EDI

HEALIAZ0E | . MOU EDE, ERA

HEE1A3ES | . OWORD PTR DS:[<&ntoskronl.IofCallbriver>]
HEALIRAZES | . MO EDI, ERA

HEE1AZES | . CHF EDOI, 182

HEAIAZEE | . ¥5 1@ SHORT i2omamt . 88818468

BaalasFa | . FUSH EE®

HEELAZF]L | . FUSH EEX

HEALRAZFZ | . FUUSH EE®

HEALAZFS | . FUSH EEX

HEALAZF4 | . 56 FUSH ESI

AAE1E3Fs | . 2C12E]0E OWORDO PTR DOS:[<&ntoskrnl.KellaitForSinaledbiect »]
HEALAZFE | . Mo EDI,

BAR1IAZSFE | . SHORT i2omamt.B@8E1841A

HEA] B4E8E FUSH EDI

saaiadal | . PUSH iZomgmt.@@861835C

HaAElE4Es | . 6A @1 FUSH 1

gaaiadas | . i2omamt . BEE1AZ2E

saalagdan | . ROO ESF, &C

BEEiad1a MO ERA, EOI

HaElA41z2 | . FOFP EDOI

HEE1R413 FOP ESI

HEAL1A4 14 FOF EBEX

BaElag41s | . C9 LEAVE

EaAElE4ls k. C2 BCaAA HC

Figure 6: Disassembly of iZomgmt.(00010386

Now we are seeing something interesting. At (1) we see that we are building a device 10 control
request to be sent to another driver. Shortly after that at (2) we see the call to the ntoskrnl.lof Call Driver
function. We don't see any static constants, or any reference to adriver name that gets called, so we
assume that whatever Iof CallDriver() is calling must be passed to it somehow. Backtracking through
the functions leading up to this, we also know that we control significant pieces of data on the way up
to thiscall, which al originates from the IOCTL we send to the driver.

Let'stake alook at the prototype for lof CallDriver; from MSDN:

NTSTATUS IofCallDriver (
IN PDEVICE_OBJECT DeviceObject,
IN OUT PIRP Irp

) ;

We can see at this point that of CallDriver is going to take in a pointer to aDEVICE OBJECT struct,
and a pointer to avalid IRP record. When looking back, we remember that the advisory is mentioning
that we can forgea DEVICE OBJECT struct to achieve code execution. Let's just make sure we
understand what this call is actually looking for, Figure 7 shows the code listing for lofCallDriver.

W

C BYTE PTR_DS:
AL.EYTE FTR
AL
T ntkrnlpa

P I e

zon lpa.
OnorRO F
El

ey e e e e

5]
o]
A
5]
A
5|
5]
5|
£]
o]
5]
o]
A
5]
)
5]
o]
A
£]
o]
5|

C
FOF ES

—

VD S S0 S TS o S o e o G) S

—
o

Figure 7: Disassembly of nt!lopfCallDriver

The first thing we notice is it decrements the number stored at [EDX+23] and then tests to make sure
it doesn't equal zero. If it does equal zero it throws the bugcheck code 0x35 and the world comes
crashing down. From MSDN the bug check code 0x00000035 has a value of:
NO_MORE_STACK_IRP_LOCATIONS and is exclusively used to indicate that a lof CallDriver call
has failed because there are no more stack locations available for the request packet. If the stack size
check passes, we move on to thefinal call at 0x00416DF5:

CALL DWORD PTR DS: [ESI+EAX*4+38]

So thisis making a call to a pointer stored at offset 0x38 in some struct. Let's take alook at the
DEVICE_ OBJECT struct and see what we have:

nt! DEVICE OBJECT

+0x000 Type Int2B

+0x002 Size Uint2B

+0x004 ReferenceCount Int4dB

+0x008 DriverObject Ptr32 DRIVER OBJECT
+0x00c NextDevice Ptr32 _DEVICE OBJECT
+0x010 AttachedDevice Ptr32 DEVICE OBJECT
+0x014 CurrentlIrp Ptr32 IRP

+0x018 Timer Ptr32 IO TIMER
+0x01lc Flags Uint4B

+0x020 Characteristics Uint4B

+0x024 Vpb Ptr32 VPB

+0x028 DeviceExtension Ptr32 Void

+0x02c DeviceType Uint4B

+0x030 StackSize Char

+0x034 Queue ___unnamed

+0x05c AlignmentRequirement Uint4B

+0x060 DeviceQueue _KDEVICE QUEUE
+0x074 Dpc _KDPC

+0x094 ActiveThreadCount Uint4B

+0x098 SecurityDescriptor Ptr32 Void

+0x09c DevicelLock _ KEVENT

+0x0ac SectorSize Uint2B

+0x0ae Sparel Uint2B

+0x0b0 DeviceObjectExtension Ptr32 DEVOBJ EXTENSION

+0x0b4

Reserved

Ptr32 Void

Well we don't see anything at an offset of 0x38 but we do seea DRIVER OBJECT pointer at Ox8 and
at 0x30 we see a StackSize member that we will make sure has a high enough value to bypass the
bugcheck. Both are valuable pieces of information. Let's take alook at what the DRIVER OBJECT
holds:

nt! DRIVER OBJECT

+0x000 Type Int2B

+0x002 Size Int2B

+0x004 DeviceObject Ptr32 DEVICE OBJECT
+0x008 Flags Uint4B

+0x00c DriverStart Ptr32 Void

+0x010 DriverSize Uint4B

+0x014 DriverSection Ptr32 Void

+0x018 DriverExtension Ptr32 DRIVER EXTENSION
+0x01c DriverName _UNICODE STRING

+0x024 HardwareDatabase Ptr32 UNICODE STRING
+0x028 FastIoDispatch Ptr32 FAST IO DISPATCH
+0x02c DriverInit Ptr32 long

+0x030 DriverStartIo Ptr32 void

+0x034 DriverUnload Ptr32 void

+0x038 MajorFunction [28] Ptr32 long

Wl look at that! At 0x38 we see a pointer to Mg orFunction, which we can naturally assumeisa
function pointer and one that we control. So the advisory is both right and wrong, we can forge a
DEVICE_ OBJECT but it'srealy the DRIVER OBJECT that gets the member function called and
ultimately runs our shellcode. So we now have afairly accurate picture of what kind of input we need
to craft to get actual shellcode execution, Figure 8 below depicts a general layout of the kernel objects.

|OCTL Buffer

DEVICE_OBJECT

0x8 DRIVER_OBJECT

- w{ DRIVER_OBJECT

0x38 MajorFunction

»| Shellcode

Figure 8: Layout of fake kernel objects.

The interesting thing is that we get to create all of these objectsin userland buffers, and point the
lofCallDriver call at them, which runs our kernel mode shellcode. Coal, let's move on.

Crafting the Input

Now we have to determine how to get full code execution out of being able to forge a

DEVICE OBJECT struct. Looking back at our IOCTL calculation if you follow the subtractions
leading up to the call being madeto i2omgmt.00010386 (which ultimately callsthe lofCallDriver
routine), we see that the final IOCTL code we need is 0x222F80. From there we now have to look at
what we have to passin for input so that ultimately we get shellcode execution.

In order for usto properly get this working we have to work in reverse. The pseudo-steps that we need
to take are:

1. Allocate memory and store shellcode.

2. Forgethefake DRIVER OBJECT and point its MaorFunction member at the shellcode.

3. Forgethefake DEVICE OBJECT, setits stack size to something high and point its
DriverObject member at the fake DRIVER OBJECT we created in step 2.

4. Create two pointersto the DEVICE OBJECT which get validated as real pointers and
nothing more.

Thefirst step is straightforward, as we have specific ring0 shellcode generators directly in CANVAS.
Step 2 is also straightforward, just create a string buffer, and set the 0x38 offset as a pointer to the
address where we stored the shellcode.

Step 3 appears to be innocuous, it requires a bit more work than first anticipated. The reason we have
extrawork is because of the code snippet shown in Figure 9 which is abasic block taken from our
i2omgmt.000106EC function:

Q0009 0739

MO ECH DWVWORD PTR DS [EBX+2C]

LE&, E&x DWVORD PTR DS:[EDIHEDI*Z]
MO EAR CVWIORD PTR DS [ECH+EARN*4+5]
MO ChORD PTR S5 [EBP-1 0] EAK

MO EAR CVIORD PTR S5 [EBP-4]

ADD E&AX ES

LE&, EDI EWORD PTR DS [EAR+S0]

PUSH GE4F3249

PUSH EDI

PUSH O

MO DhORD PTR S5:[EBP-20],EDI

Call CWwWORD PTR DS [=&rtoskenl ExdllocatePoolMthTag=] rtoskrnl ExAllocatePoolithTag
WO EDH EAM

TEZT EDX EDx

MO DWORD PTR S5:[EBP-C] EDX

JMZ SHORT i2omgrmt. 00010751

Figure 9: Basic block containing troublesome pointer math.

S0 at the head of this basic block, the following two instructions are of importance.

LEA EAX, DWORD PTR DS:[EDI+EDI*2]
MOV EAX, DWORD PTR DS: [ECX+EAX*4+8]

In this case we control the value of EDT and when these two instructions finish their cal culations, they
load the final value into alocal variable using:

MOV DWORD PTR SS: [EBP-10], EAX

Thislocal variableisour DEVICE OBJECT, so we need to first figure out a sane value for EDI so that
it will result in avalid pointer to the DEVICE OBJECT that we control. Kostya contributed the math
to help me out:

device object ptr = (brute device address - 8) / 12

Thebrute device address variableisthefinal address we want the calculations to equal. Why
the brute inthe variable name? In order for this address to be valid we have to make sureit is
divisible by 12. So we allocate alarge amount of memory, and then iterate through it until we find an
address that is divisible by 12. Once we find the appropriate address we use it as the place to store our
fake DEVICE OBJECT and using the formula above, when we passin device object ptr (EDI
in the assembly code above) which will be calculated out to point to our DEVICE OBJECT. If this
pretty pointer dance isn't done correctly, we blue screen and it's game over!

The final step is simple enough, we create two pointers that get validated against each other, and both
point to the DEVICE OBJECT that we created in memory. | can't be certain why it expects the pointers
in this fashion but it does, it's either an undocumented M S struct or a proprietary way for this driver to
receive IOCTLs.

Conclusion

Thiswas an interesting bug to work with, as the forging of these kernel objectsin userland requires
very careful setup, calculation, and there were no overflows involved. | definitely suspect that everyone
will betaking a closer eye to thistype of attack, as many drivers will accept unfettered IOCTL requests
from userland without first checking the validity (not just the length or size) of the objects being passed
in. The source for this exploit is part of the CANVAS tree, and the exploit is well documented
throughout the code if any further clarification is needed.

There were alot of lessons learned throughout coding this exploit, and in the near future you should see
afresh release of the IOCTL fuzzer we are continually improving on at Immunity. The fuzzer also
comes with an automated method for calculating IOCTL codes using Immunity Debugger which is
extremely useful for reveresing these types of bugs out.

Thanks again to Kostya, Nico, and the rest of the team at Immunity for their help. Congratulations to
Reuben for discovering such aneat bug! For any questions, comments, etc. please contact me, and the
rest of the team can be reached at support@immunityinc.com

mailto:support@immunityinc.com

	
	I2OMGMT Driver Impersonation Attack
	
	 Justin Seitz
	Introduction
	Finding the Bug
	Crafting the Input
	Conclusion

