
1

Intelligent Debugging
for Vulnerability Analysis and Exploit

Development

Security Research

2

Who am I?
● Damian Gomez, Argentina
● Being working @ Immunity since early 2006
● Security Research focusing on:

– Vulnerability analysis

– Exploit development

● VisualSploit lead developer
● Main developer of Immunity Debugger project

3

Introduction
 An exploit may be coded in multiple languages:

- Pascal
- Fortran
- Lisp
- Brainfuck
- Cupid
- Gap
- Kermit
- Java

- Asm
- C
- Python
- Perl
- Shellscript
- PHP
- Cobol
- Foxpro

- zmud!
- whitespace
- yacc
- smalltalk
- C#
- C++
- C--
- C
- C-smile
- Cocoa

- Coffee
- Clipper
- Delphi
- B
- A
- C

4

- Clist
- Kalkulon
- ABC
- ADA
- ALF
- Batch
- TOM
- OZ
- Modula-3

- Lingo
- Fortress
- elastiC
- D
- cT
- AWK
- Felix
- Guile
- MC#

- VisualBasic
- Nemerle
- Objetive-C
- Phantom
- Prolog
- Simula
- Snobol
- Turing
- Blue

- Quickbasic
- Ruby
- S
- Obliq
- GNU E
- COMAL
- NetRexx
- PL/B
- Sather

5

 etc

6

Immunity VisualSploit introduced a
graphical domain-specific language

for exploit development

7

Exploits are a functional
representation of Intelligent

Debugging

Exploit

Input Crafting

Heap Analysis

Memory state
manipulation

Protocol Analysis

8

We want a debugger with a “rich API” for
exploit development

● Simple, understandable interface
● Robust and powerful scripting language for

automating intelligent debugging
● Lightweight and fast debugging so as not to

corrupt our results when doing complex analysis
● Connectivity to fuzzers and other exploit

development tools

9

No one user interface model is perfect
for all exploit development situations

● These three main characteristics will help us
achieve what we want:
– GUI

– Command Line

– Scripting language

10

A debugger's GUI can take weeks off
the time it takes to write an exploit

● Easy visualization of debugee context
– Does EAX point to a string I control? Yes!

● Faster to learn for complex commands
● Downside: Slower usage than commandline due to

mice

11

The command line is the faster option

● Example GDB commandline:
– x/i $pc-4

● Example WinDBG commandline:
– u eip -4

● Example Immunity Debugger commandline:
– u eip -4

12

Immunity Debugger's Scripting
Language is Python 2.5

● Automate tasks as fast as you can think of them
● Powerful included API for manipulating the

debugger
– Need another API hook? Email

dami@immunityinc.com

● Familiar and easy to learn
● Clean and reusable code with many examples

13

GUI+CLI+Python = Faster, better
exploits

● Immunity Debugger integrates these 3 key
features to provide a vuln-dev oriented debugger

● Cuts vulnerability development time in half
during our testing (Immunity buffer overflow
training)

● Allows for the rapid advancement of state-of-the-
art techniques for difficult exploits

14

The integration

Immunity debugger running a custom script from its command box and
controlling the GUI output

15

The Immunity Debugger API:
● The API is simple
● It usually maintains a cache of the requested

structures to speed up the experience (especially
useful for search functions)

● It can not only perform debugging tasks, but also
interact with the current GUI

● Keep in mind that you are creating a new instance on
every command run, so the information in it will be
regenerated on each run.

16

How deep can we dive with the API?
● Assembly/Disassembly
● Breakpoints
● Read/Write Memory
● Searching
● Execution and stepping
● Analysis
● Interaction with GUI

17

Interacting with the GUI offer:
● New custom windows for displaying your data
● Tables, Dialog boxes, Input dialogs

– Create a wizard for complex scripts like findantidep

● Add functionality to already existent windows
● The possibility to create a python based

orthogonal drawing algorithm and get something
like this:

18

Python API Orthogonal Grapher

19

Immlib: R/W Memory

● readMemory(address, size)

● readLong(address)

● readShort(address)

● readString(address)

● readUntil(address, ending_char)

● writeMemory(address, buf)

20

Immlib: Searching

● The following search functions return a list of
addresses where a particular value was
found.

● Search(buf)

● searchLong(long_int)

● searchShort(short_int)

21

Immlib: Searching
● Searching Commands
● Commands are sequence of asm instruction

with a bit of regexp support
– searchCommands(cmd)

– SearchCommandsonModule(address, cmd)

● Returns a list of (address, opcodes, module)
● ex:

imm.searchCommands(“pop RA\npop
RB\nret”)

22

Immlib: Searching
● Keep in mind, that SearchCommands use

the disassemble modules to search, so if you
want a deeper search (without regexp) you
can do:
ret = imm.Search(imm.Assemble("jmp EBX"))

23

Immlib: Searching
● Finding a module which an address belongs

to:
– findModule(address)

● Finding exported function on loaded
addresses
– findDependencies(lookfor)

Note: lookfor is a table of functions to search for

24

Immlib: Getting References
● Getting Code XREF:

– getXrefTo(address)

– getXrefFrom(address)

● Getting Data XREF
– findDataRef(address)

25

Immlib: Knowledge

● Since every run of a script is ephemeral,
there is a way to save some data and use it
on a second run of the same script or any
other script:
– imm.addKnowledge(“nocrash”, cpu_context)

– imm.getKnowledge(“nocrash”)

26

There are three ways to script
Immunity Debugger

● PyCommands
● PyHooks
● PyScripts

27

PyCommands are temporary scripts
● Decrease developing and debugging time
● Non-caching (run , modify, and re-run your

PyCommand at will, without restarting the
debugger)

● Accessible via command box, or GUI
● Integrate with debugger's features (including the

GUI)

28

Scripting Immunity Debugger
● Writing a PyCommand is easy
● command.py

import immlib

def main(args):

 imm=immlib.Debugger()

 imm.Log(“Done”)

● Place it into PyCommands directory and you
are ready to go

29

Scripting Immunity Debugger
PyHooks:
● Hooks are Objects that hang on debugger

events and get executed when that event is
hit.

● We have 11 different hooks:
● class BpHook(Hook)
● class LogBpHook(Hook)
● class AllExceptHook(Hook)
● class PostAnalysisHook(Hook)
● class AccessViolationHook(Hook)
● class LoadDLLHook(Hook)

● class UnloadDLLHook(Hook)
● class CreateThreadHook(Hook)
● class ExitThreadHook(Hook)
● class CreateProcessHook(Hook)
● class ExitProcessHook(Hook)

30

Scripting Immunity Debugger
Creating a Hook is easy:

Hooks always
have CPU context

at runtime

31

Identify common coding problems by
running a program under Immunity

Debugger

● strncpy(dest, src, strlen(src))
– Common vulnerability primitive

● Similar vulnerabilities, such as memcpy(dest, src,
sizeof(src)) are also detectable using slightly
more advanced Immunity Debugger API's

32

Hook example: logpoint on strncpy
● Instantiate debugger class
● Set logpoint address [strncpy]
● Create logbphook

33

Hook example: logpoint on strncpy
● The MyOwnHook class

Get

arguments
from CPU

context

34

logpoint on strncpy (continuation)

Log callstack if the
size arg is the same

as the src string size

35

Logpoint on strncpy: results
debug,debug,debug and check your results:

36

Injecting a hook into your target for
debugging

● Logging hook
● Much faster, since it doesn't use the debugger
● Inject ASM code into debugged process
● Hooked function redirects to your asm code
● The information is logged in the same page
● Used in hippiehippie heap analysis tool

37

There are drawbacks to using
injection hooking

● Inject Hooking only reports the result, you
cannot do conditionals on it (for now)

● Hooking on Functions:

38

Printing the results of an injection
hook

● Get the results directly from the log window

39

Heap analysis is one of the most
important tasks for exploit

development
● Printing the state of a heap
● Closely examining a heap or heap chunk
● Saving and restoring heap state for comparison
● Visualizing the heap
● Automatically analyzing the heap

40

Immunity Debugger Heap Lib
● Getting all current heaps:
 for hndx in imm.getHeapsAddress():

 imm.Log("Heap: 0x%08x" % hndx)

● Getting a Heap object
 pheap = imm.getHeap(heap)

● Printing the FreeList

 pheap.printFreeList(uselog = window.Log)
● Printing the FreeListInUse
 pheap.printFreeListInUse(uselog = window.Log)

41

Immunity Debugger Heap Lib
● Printing chunks

● Accessing chunk information

42

Immunity Debugger Heap Lib
● Searching Chunks
 SearchHeap(imm, what, action, value, heap =
 heap, option = chunkdisplay)

 what (size,usize,psize,upsize,flags,address,
 next,prev)

 action (=,>,<,>=,<=,&,not,!=)

 value (value to search for)

 heap (optional: filter the search by heap)

43

Datatype Discovery Lib
● Finding datatype on memory

 memory memory to inspect

 address address of the inspected memory

 what (all, pointers, strings,
 asciistrings, unicodestrings,
 doublelinkedlists, exploitable)

44

Datatype Discovery Lib
● Types of pointers

45

Coast to coast

46

Immunity Debugger Scripts

● Team Immunity has being coding scripts for :
– Vulnerability development

– Heap

– Analysis

– Protocols

– Search/Find/Compare Memory

– Hooking

47

Script: Safeseh
● safeseh

– Shows you all the exception handlers
in a process that are registered with
SafeSEH.

– Code snip:

48

Script: Find anti DEP
● Findantidep

– Find address to bypass software DEP

– A wizard will guide you through the execution of
the findantidep script

● Get the result

49

Finding memory leaks magically
● leaksniff

– Pick a function

– !funsniff function

– Fuzz function

– Get the leaks

50

Finding datatypes in memory magically

● finddatatype
– Specify an address

– Set the size to read

– Get a list of data types

51

Dumping the heap
● Heap pycommand

– Give

address

– Dump it

52

 Script : Chunk analyze
● chunkanalyzehook

– !chunkanalyzehook -a addr_of_rep_mov EDI-8

– Run the script and fuzz

– Get the result (aka, see what of your command on the
fuzzing get you a overwrite of a Function Ptr or Double
Linked list)

53

Script : Get RPC
● getrpc

– !getrpc module.dll

– Access to RPC information

– Functions Pointers of every RPC call

54

Script : duality

● Duality
– Looks for mapped address that

can be 'transformed' into
opcodes

55

Script : Finding Function Pointers

● !modptr <address>
– this tool will do data type recognition looking for all

function pointers on a .data section, overwriting them
and hooking on Access Violation waiting for one of
them to trigger and logging it

56

Script : CRYPT SEARCH

● !searchcrypt address range
– Search for cryptographic routines in given range

57

Case Study: Savant 3.1
Stack Overflow

● Savant webserver
(savant.sourceforge.net)

● Stack overflow when sent long get
request

 however...

58

Case Study: Savant 3.1
First problem

● Overwritten stack arguments won't
allow us to reach EIP

59

Case Study: Savant 3.1
First problem

● So we need to find a readable address
to place as the argument there....

● And we'll face the second argument: a
writable address

60

Case Study: Savant 3.1

To hit EIP:
– A readable address

– A writable address

– The arguments offsets in our evilstring:

61

Case Study: Savant 3.1

 Finding the offsets...

62

Case Study: Savant 3.1
We get something like this:

And with the arguments issue solved
we are able to cleanly hit EIP

63

Case Study: Savant 3.1

● Once we hit EIP, in detail we have control over:
– EBP value

– EIP value (of course)

– What ESP points to (1 argument)

– What ESP + 4 points to (2 argument)

– More than 200 bytes buffer starting at [EBP – 104H]
to [EBP - 8H]

64

Case Study: Savant 3.1
And with this context, the

first thing one would think
is:

we need to jump back,

but how?

Second Problem....

What ESP
points to

65

Case Study: Savant 3.1
Since we are controlling what ESP points to, what if we

could find an address to place as the overwritten
argument, which:
– Is writable [remember first problem]

– Can be “transformed” into opcodes that would be of use
here...like a 'jmp -10' (to land into our controlled buffer)

66

Case Study: Savant 3.1
 Finding an address with these characteristics might be

pretty tedious...or a matter of seconds using one of the
Immunity Debugger scripts we talked a few minutes
ago: Duality

67

Case Study: Savant 3.1
 How duality works:

– Create a mask of the searched code [jmp -10]

– Get all mapped memory pages

– Find all addresses that match our masked searchcode

– Log results:

68

Case Study: Savant 3.1
 Almost there:

– Before finishing crafting our evilstring with the brand new
transformable address we'll need to find a jmp esp for EIP:

● Searchcode script will do that in a quick and easy way

69

Case Study: Savant 3.1
 Resume:

– Bypassed arguments problem

– Hit EIP

– Searched for a writable address that can be transformed into
a desired opcode (0x7ffdf0eb)

– Searched for a jmp esp (0x74fdee63)

– Crafted the string:

70

Case Study: Savant 3.1
 Resulting in:

71

Conclusions
● ID wont give you an out-of-box exploit (yet) but:

– It will speed up debugging time (gui + commandline)

– Will help you finding the bug (API + libs + scripts)

– Will help you crafting your exploit (make it reliable!)

● ID is not a proof-of-concept application (it has been
used for months successfully by our vuln-dev team)

72

Spinning in my head...
● API server, to connect to VisualSploit, Canvas,

fuzzers, or whichever application
● More graphing stuff, including interaction with the

generated graph
● Tons of pycommands
● Your script here

 Meanwhile....

73

Download Immunity Debugger now!

Get it free at:

 http://debugger.immunityinc.com

Comments, scripts, ideas, requests:

 dami@immunityinc.com

http://debugger.immunityinc.com/

