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Intelligent Debugging 
for Vulnerability Analysis and Exploit 

Development

Security Research
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Who am I?
● Damian Gomez, Argentina
● Being working @ Immunity since early 2006
● Security Research focusing on:

– Vulnerability analysis

– Exploit development 

● VisualSploit lead developer
● Main developer of Immunity Debugger project
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Introduction
  An exploit may be coded in multiple languages:

- Pascal
- Fortran
- Lisp
- Brainfuck
- Cupid
- Gap
- Kermit
- Java

- Asm
- C
- Python
- Perl
- Shellscript
- PHP
- Cobol
- Foxpro

- zmud!
- whitespace 
- yacc
- smalltalk
- C#
- C++
- C--
- C
- C-smile
- Cocoa

- Coffee
- Clipper
- Delphi
- B
- A
- C 
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- Clist
- Kalkulon
- ABC
- ADA
- ALF
- Batch
- TOM
- OZ
- Modula-3

- Lingo
- Fortress
- elastiC
- D
- cT
- AWK
- Felix
- Guile 
- MC#

- VisualBasic
- Nemerle
- Objetive-C
- Phantom
- Prolog
- Simula
- Snobol
- Turing
- Blue

- Quickbasic
- Ruby
- S
- Obliq
- GNU E
- COMAL 
- NetRexx
- PL/B
- Sather
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 etc
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Immunity VisualSploit introduced a 
graphical domain-specific language 

for exploit development 
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Exploits are a functional 
representation of Intelligent 

Debugging
 

Exploit

Input Crafting

Heap Analysis

Memory state
manipulation

Protocol Analysis
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We want a debugger with a “rich API” for 
exploit development

● Simple, understandable interface
● Robust and powerful scripting language for 

automating intelligent debugging
● Lightweight and fast debugging so as not to 

corrupt our results when doing complex analysis
● Connectivity to fuzzers and other exploit 

development tools
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No one user interface model is perfect 
for all exploit development situations

● These three main characteristics will help us 
achieve what we want:
– GUI

– Command Line

– Scripting language
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A debugger's GUI can take weeks off 
the time it takes to write an exploit

● Easy visualization of debugee context
– Does EAX point to a string I control? Yes!

● Faster to learn for complex commands
● Downside: Slower usage than commandline due to 

mice 
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The command line is the faster option 

● Example GDB commandline:
– x/i $pc-4

● Example WinDBG commandline:
– u eip -4

● Example Immunity Debugger commandline:
– u eip -4
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Immunity Debugger's Scripting 
Language is Python 2.5

● Automate tasks as fast as you can think of them
● Powerful included API for manipulating the 

debugger
– Need another API hook? Email 

dami@immunityinc.com

● Familiar and easy to learn
● Clean and reusable code with many examples
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GUI+CLI+Python = Faster, better 
exploits

● Immunity Debugger integrates these 3 key 
features to provide a vuln-dev oriented debugger

● Cuts vulnerability development time in half 
during our testing (Immunity buffer overflow 
training) 

● Allows for the rapid advancement of state-of-the-
art techniques for difficult exploits
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The integration

Immunity debugger running a custom script from its command box and                                        
controlling the GUI output  
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The Immunity Debugger API: 
● The  API is simple
● It usually maintains a cache of the requested  

structures to speed up the experience (especially 
useful for search functions)

● It can not only perform debugging tasks, but also 
interact with the current GUI

● Keep in mind that you are creating a new instance on 
every command run, so the information in it will be 
regenerated on each run.
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How deep can we dive with the API? 
● Assembly/Disassembly
● Breakpoints
● Read/Write Memory
● Searching
● Execution and stepping
● Analysis
● Interaction with GUI
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Interacting with the GUI offer: 
● New custom windows for displaying your data
● Tables, Dialog boxes, Input dialogs

– Create a wizard for complex scripts like findantidep

● Add functionality to already existent windows
● The possibility to create a python based 

orthogonal drawing algorithm and get something 
like this:
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Python API Orthogonal Grapher 
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Immlib: R/W Memory 

● readMemory(address, size)

● readLong(address)

● readShort(address)

● readString(address)

● readUntil(address, ending_char)

● writeMemory(address, buf)
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Immlib: Searching 

● The following search functions return a list of 
addresses where a particular value was 
found.

● Search(buf)

● searchLong(long_int)

● searchShort(short_int)
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Immlib: Searching 
● Searching Commands
● Commands are sequence of asm instruction 

with a bit of regexp support
– searchCommands(cmd)

– SearchCommandsonModule(address, cmd)

● Returns a list of (address, opcodes, module)
● ex:

imm.searchCommands(“pop RA\npop 
RB\nret”)
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Immlib: Searching 
● Keep in mind, that SearchCommands use 

the disassemble modules to search, so if you 
want a deeper search (without regexp) you 
can do:
ret = imm.Search(imm.Assemble("jmp EBX"))
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Immlib: Searching 
● Finding a module which an address belongs 

to:
– findModule(address)

● Finding exported function on loaded 
addresses
– findDependencies(lookfor)   

Note: lookfor is a table of functions to search for
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Immlib: Getting References 
● Getting Code XREF:

– getXrefTo(address)

– getXrefFrom(address)

● Getting Data XREF
– findDataRef(address)
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Immlib: Knowledge 

● Since every run of a script is ephemeral, 
there is a way to save some data and use it 
on a second run of the same script or any 
other script:
– imm.addKnowledge(“nocrash”, cpu_context)

– imm.getKnowledge(“nocrash”)
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There are three ways to script 
Immunity Debugger

● PyCommands                                       
● PyHooks                                               
● PyScripts                                             
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PyCommands are temporary scripts
● Decrease developing and debugging time
● Non-caching (run , modify, and re-run your 

PyCommand at will, without restarting the 
debugger)

● Accessible via command box, or GUI  
● Integrate with debugger's features (including the 

GUI)                                           
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Scripting Immunity Debugger
● Writing a PyCommand is easy
● command.py

import immlib

def main(args):

    imm=immlib.Debugger()

    imm.Log(“Done”)

● Place it into PyCommands directory and you 
are ready to go
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Scripting Immunity Debugger
PyHooks:
● Hooks are Objects that hang on debugger 

events and get executed when that event is 
hit.

● We have 11 different hooks:                                        
● class BpHook(Hook)
● class LogBpHook(Hook)
● class AllExceptHook(Hook)
● class PostAnalysisHook(Hook)
● class AccessViolationHook(Hook)
● class LoadDLLHook(Hook)

● class UnloadDLLHook(Hook)
● class CreateThreadHook(Hook)
● class ExitThreadHook(Hook)
● class CreateProcessHook(Hook)
● class ExitProcessHook(Hook)
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Scripting Immunity Debugger
Creating a Hook is easy:

                                    

Hooks always 
have  CPU context 

at runtime
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Identify common coding problems by 
running a program under Immunity 

Debugger

● strncpy(dest, src, strlen(src))
– Common vulnerability primitive 

● Similar vulnerabilities, such as memcpy(dest, src, 
sizeof(src)) are also detectable using slightly 
more advanced Immunity Debugger API's
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Hook example: logpoint on strncpy
● Instantiate debugger class
● Set logpoint address [strncpy]
● Create logbphook 
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Hook example: logpoint on strncpy
● The MyOwnHook class

                               
Get 

arguments 
from CPU 

context
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logpoint on strncpy (continuation)

Log callstack if the 
size arg is the same 

as the src string size 
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Logpoint on strncpy: results
debug,debug,debug and check your results:
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Injecting a hook into your target for 
debugging

● Logging hook
● Much faster, since it doesn't use the debugger
● Inject ASM code into debugged process
● Hooked function redirects to your asm code
● The information is logged in the same page
● Used in hippiehippie heap analysis tool
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There are drawbacks to using 
injection hooking

● Inject Hooking only reports the result, you 
cannot do conditionals on it (for now)

● Hooking on Functions:
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Printing the results of an injection 
hook

● Get the results directly from the log window
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Heap analysis is one of the most 
important tasks for exploit 

development
● Printing the state of a heap
● Closely examining a heap or heap chunk
● Saving and restoring heap state for comparison
● Visualizing the heap
● Automatically analyzing the heap
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Immunity Debugger Heap Lib 
● Getting all current heaps:
 for hndx in imm.getHeapsAddress():

   imm.Log("Heap: 0x%08x" % hndx)

● Getting a Heap object
 pheap = imm.getHeap( heap )

● Printing the FreeList

 pheap.printFreeList( uselog = window.Log )
● Printing the FreeListInUse
 pheap.printFreeListInUse(uselog = window.Log)
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Immunity Debugger Heap Lib 
● Printing chunks

● Accessing chunk information
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Immunity Debugger Heap Lib 
● Searching Chunks
 SearchHeap(imm, what, action, value, heap =     
          heap, option = chunkdisplay)

 what   (size,usize,psize,upsize,flags,address,  
       next,prev)

 action (=,>,<,>=,<=,&,not,!=)

 value  (value to search for)

 heap   (optional: filter the search by heap)
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Datatype Discovery Lib
● Finding datatype on memory
 

 memory     memory to inspect

 address    address of the inspected memory

 what       (all, pointers, strings,             
           asciistrings, unicodestrings,        
           doublelinkedlists, exploitable)
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Datatype Discovery Lib
● Types of pointers
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Coast to coast
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Immunity Debugger Scripts 

● Team Immunity has being coding scripts for :
– Vulnerability development

– Heap 

– Analysis

– Protocols

– Search/Find/Compare Memory 

– Hooking
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Script: Safeseh 
● safeseh

– Shows you all the exception handlers 
in a process that are registered with 
SafeSEH.

– Code snip:
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Script: Find anti DEP 
● Findantidep

– Find address to bypass software DEP

– A wizard will guide you through the execution of 
the findantidep script

● Get the result
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Finding memory leaks magically
● leaksniff

– Pick a function

– !funsniff function

– Fuzz function

– Get the leaks
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Finding datatypes in memory magically

● finddatatype
– Specify an address

– Set the size to read

– Get a list of data types
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Dumping the heap
● Heap pycommand

– Give 

address

– Dump it
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 Script : Chunk analyze
● chunkanalyzehook

– !chunkanalyzehook -a addr_of_rep_mov EDI-8

– Run the script and fuzz

– Get the result (aka, see what of your command on the 
fuzzing get you  a overwrite of a Function Ptr or Double 
Linked list)



53

Script : Get RPC
● getrpc

– !getrpc module.dll

– Access to RPC information

– Functions Pointers of every RPC call
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Script : duality

● Duality
– Looks for mapped address that 

can be 'transformed' into 
opcodes
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Script : Finding Function Pointers

● !modptr <address>
– this tool will do data type recognition looking for all 

function pointers on a .data section, overwriting them 
and hooking on Access Violation waiting for one of 
them to trigger and logging it
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Script : CRYPT SEARCH

● !searchcrypt address range
– Search for cryptographic routines in given range
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Case Study: Savant 3.1
Stack Overflow

● Savant webserver 
(savant.sourceforge.net)

● Stack overflow when sent long get 
request

   

                                 

                                   however...
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Case Study: Savant 3.1
First problem

● Overwritten stack arguments won't 
allow us to reach EIP
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Case Study: Savant 3.1
First problem

● So we need to find a readable address 
to place as the argument there....

● And we'll face the second argument: a 
writable address
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Case Study: Savant 3.1

To hit EIP:
– A readable address

– A writable address

– The arguments offsets in our evilstring:
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Case Study: Savant 3.1

          Finding the offsets...
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Case Study: Savant 3.1
We get something like this:

And with the arguments issue solved 
we are able to cleanly hit EIP
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Case Study: Savant 3.1

● Once we hit EIP, in detail we have control over:
– EBP value

– EIP value (of course)

– What ESP points to (1 argument)

– What ESP + 4  points to  (2 argument)

– More than 200 bytes buffer starting at [EBP – 104H] 
to [EBP - 8H]
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Case Study: Savant 3.1
And with this context, the 

first thing one would think 
is:

we need to jump back, 

but how?

Second Problem....

What ESP 
points to
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Case Study: Savant 3.1
Since we are controlling what ESP points to, what if we 

could find an address to place as the overwritten 
argument, which:
– Is writable [remember first problem]

– Can be “transformed” into opcodes that would be of use 
here...like a 'jmp -10' (to land into our controlled buffer)
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Case Study: Savant 3.1
  Finding an address with these characteristics might be 

pretty tedious...or a matter of seconds using one of the 
Immunity Debugger scripts we talked a few minutes 
ago: Duality
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Case Study: Savant 3.1
  How duality works:

– Create a mask of the searched code [jmp -10]

– Get all mapped memory pages

– Find all addresses that match our masked searchcode

– Log results:



68

Case Study: Savant 3.1
 Almost there:

– Before finishing crafting our evilstring with the brand new 
transformable address we'll need to find a jmp esp for EIP:

● Searchcode script will do that in a quick and easy way
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Case Study: Savant 3.1
 Resume:

– Bypassed arguments problem

– Hit EIP

– Searched for a writable address that can be transformed into 
a desired opcode (0x7ffdf0eb)

– Searched for a jmp esp (0x74fdee63)

– Crafted the string:
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Case Study: Savant 3.1
 Resulting in:
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Conclusions
●  ID wont give you an out-of-box exploit (yet) but:

– It will speed up debugging time (gui + commandline)

– Will help you finding the bug (API + libs + scripts)

– Will help you crafting your exploit (make it reliable!)

●  ID is not a proof-of-concept application (it has been 
used for months successfully by our vuln-dev team)
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Spinning in my head...
●  API server, to connect to VisualSploit, Canvas, 

fuzzers, or whichever application
● More graphing stuff, including interaction with the 

generated  graph
● Tons of pycommands
● Your script here

                                               Meanwhile....
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Download Immunity Debugger now!

Get it free at:

                    http://debugger.immunityinc.com

Comments, scripts, ideas, requests:

            

              dami@immunityinc.com

http://debugger.immunityinc.com/

