Advanced Ordnance

V1.2
September 13, 2004
Dave Aitel
dave @ immunitysec.com

Advanced Ordnance Project Goals

 Examine and develop advanced replicating
programs

 Examine and develop remote information
retrieval techniques

 Examine how to properly use these techniques to
perform advanced testing of network security

MOSDEF

* MODSEEF was first presented to the public at
Blackhat Federal 2003, and 1s now usable

* It provides a pure Python compiler and assembler

for use in CANVAS's exp]

oltation engine

e MOSDETF i1s publicly avai!
— http:

able under the LGPL

Overview

* After you've overflowed a process you can compile programs to
run inside that process and report back to you

* Goal: Support Immunity CANVAS

- A sophisticated exploit development and demonstration tool
- Supports every platform (potentially)
- 100% pure Python

MOSDEF Design

Efficient network protocol
The ability to do more than one thing at a time

- | want cross-platform job control in my shellcode!

No hand marshalling/demarshalling
No need to special case fork() or GetLastError()

Port from one architecture to the other nicely

inputs: the filename to open
outputs: returns -1 on failure, otherwise a file handle
truncates the file if possible and it exists

request=self.compile(
#import "remote","Kernel32. Icreat" as " Icreat"
#import "local","sendint" as "sendint"
#import "string","filename" as "filename”
//start of code
void main()
{
inti;
I=_lIcreat(filename,0);
sendint(i);

self.sendrequest(request)
fd=self.readint()
return fd

eNeeded

* A C compiler

e An x86
assembler

* A remote
linker

e Internal architecture

C Code

MOSDEF portability

Shellcode

aMOSDEF network efficiencies

* While loops are moved to remote side and
executed inside hacked process

* Only the information that is needed is sent
back — write() only sends 4 bytes back

* Multiple paths can be executed

— 0on error, you can send back an error message
- On success you can send back a data structure

MOSDEF marshalling

* “[lUn]Marshalling” is done in C

- Easy to read, understand, modify
- Easy to port

* integers don't need re-endianing
* Types can be re-used

* The main problem is how to share the
outbound TCP socket

- What we really need is cross-platform locking

e Unix (processes) flock()
* Windows (threads) EnterCriticalSection()

- Now we can spin off a “process”, and have it
report back!

e The only things that change are sendint(), sendstring
() and sendbuffer()

* These change globally — our code does not need to
be “thread aware”

Other befits

* No special cases

 Having an assembler in pure python gives
you the abillity to finally get rid of giant blocks
of “\xeb\x15\x44\x55\x11” in your explolits.
You can just self.assemble() whatever you
need

e Future work around finding smaller
shellcode, writing shellcode without bad
characters, polymorphic shellcode

Advanced MOSDEF
* Applications for MOSDEF

- A SOCKS proxy to allow exploits to be run through
1t, without knowing they were even using it

— Executing shell commands with full job control
— Transferring files quickly and easily
— Breaking root (most local exploits are in C already!)

— Adding an encryption layer transparent to all other
MOSDEF applications

— Intelligently enabling your attack mission on the
remote host

— Distributed nassword crackine

Licensing and Other Issues

 Immunity is a vulnerability information provider,
not a software company

* CANVAS is best-of-breed vulnerability
information delivery system

* MOSDETF supports that, but other people are free
to build on and improve it and use 1t 1n their own
free or commercial applications

e Hence, MOSDETF is licensed under the LGPL
e http://www.immunitysec.com/MOSDEF/

Other Projects of Interest
* Hoon -
- X86 AT&T assembler for shellcode written in Python

* Shellforge

— A Python script to parse GCC generated .o files and
generate shellcode

* The Grugq's userland-exec

Advanced Ordnance

Taking MOSDEF one step further

Why a worm?

* Self-replicating programs manage to surprise people with
where they get. We need to capture that serendipity

* Worms are the i1deal platform for distributed algorithms

* We may only have hours of target-window

— May have a certainty of being discovered
— May be losing a 0-day
— May be losing connectivity

— May be able to come back later, but various intermediate
hosts are different

Mental Position

* Networks are still mostly flat

e Mission oriented: Given X I should be ableto Y

* Manual (operator-dependent) network penetration
1s hard to scale in both speed and size

e Not all hosts are on the network at once

 Host to host jumping is a concept that breaks
down in the time domain

Given

* Access to one host internally

* Ability to create reliable exploits

I should b able to:

* Get every file on the network named “*.x1s” with
“Salary” 1n 1t

* Be able to tune to multiple levels of covertness

* Be able to control the replicating program and
restrict 1t to a certain level of hosts and networks

* Prevent forensic analysis from knowing what
files I recovered, if any

* Prevent automated response and analysis of my
replicating program, defeating IDS 1f necessary

Agenda

* Three stages

— Injection method
— Payload creation

— Strategic denial and deception

Injection Method

e Easiest to assume that we are 1n control of a
process from some given exploit

— Should not have to be the same exploit as the worm
will use

— Interesting case 1s to assume we have the same OS
and architecture

* And program

Inj ection Possibilities

= %

Targets (potential worm
hosts)

Homogeneous Case

* Same platform allows us to infect current process by emulating target

environment

— Drawback: forensic analysis of current host will reveal initial penetration
method (which may be a different process than the worm's target)

— Can disconnect after infection to allow current host to perform further
infections autonomously

Heterogeneous Case

4

e Must emulate worm behavior to infect initial hosts

— Worm behavior does not have to be a simple send()!

* Must scan for target set

— Or have pre-placed target list

* Create custom payload

e Infect targets

A Worm Creation API

* Worms have a static environment, based on target
assumptions

e Worms must be self-reliant

* Worms must be able to have a complex
exploitation procedure

* A good engine should support mutation

Example

e Start of shellcode has happened

— Must select and infect targets

* Create payload from current mangled shellcode
* Perform scanning

* Perform infection
— Must perform payload operations
e Exfiltration, destruction, etc

— Space 1s a premium, since you carry your house with
you like a turtle

ShellcodeGenerator

The problem is creating a shellcode which can replicate
We use MOSDEEF as an integrated compiler/assembler

— Treat all aspects of worm creation as defining a
special-purpose compiler

— We operate on the string that is the assembly
language to create a payload

Similar to current CANVAS win32 shellcode generation

Can also use advanced MOSDEF C compilation at times

Worms are special cases of shellcode

You may not want to decode your worm at all!

You may need to decode after performing special
operations (such as copying) first

Your payload may need to define a complex
network protocol

Your worm may mutate as it goes along to hold
state (TTL, etc)

Simple emple

e Using testvulnl.c as a target on the Windows
operating system

— Can assume esp points to current shellcode

— Psuedo-code of worm:

* Copy current payload at esp to another location and store
that location

e Decode shellcode

* Generate an import table with connect(), send(), random
number generator function

* For each random IP, connect(); send(sizeof(payload)); send
(payload);

Building a payload

* testvulnl.c required minimal protocol creation,
since 1t just needed to be sent a size and then the
shellcode to be executed

— Si1ze should be little endian

— Unlimited size

— No filter

sc=advancedordinance_x86()
sc. TTL(5) #network hops to go through

sc.maxSize(Oxffffffff) #compiling routines take this into account
sc.targetsRange(“192.168.1.0/24”) #changes our randomization function
sc.setTargetPort(5000) #used for tcpconnect
sc.setReplicateL.oops(500)
sc.setStyle(“payloadfirst”) #run the payload, then replicate
sc.setSelfPtr(“esp”) #the pointer to use at our start
sc.code="""
copyself stackalloc #set “selfloc” variable to point to new copy
decTTL #when we reach 0 we skip the replicating block
replicatestart #a label for control flow

getrandomtarget

tcpconnect #open a socket to the target

sendint 2000 #our size plus some

sendmem selfloc #send the worm to the next host

tcpclose #close the socket
replicateend #loop if necessary

payloadstart #a label for control flow

.1 °

BlacklIce 1CQ overtlow (Witty)

* Requires protocol header — uses offset from edi to
locate 1t

* Written entirely in non-zeros, so doesn't need
encoder/decoder and can use itself as payload

e Covertness:

— Chooses random destination ports and from addresses

sc=advancedordinance_x86()

sc.setFilter(“\x00’")

sc. TTL(5) #network hops to go through

sc.maxSize(5000) #compiling routines take this into account

sc.targetsRange(““192.168.1.0/24”) #changes our randomization function
sc.setReplicateL.oops(500)
sc.setStyle(“payloadfirst”) #run the payload, then replicate
sc.setSelfPtr(“*(edi-8)”) #the pointer to use at our start
sc.code="""
getself #set “selfloc” variable to point to new copy — we don't have a decoder loop
decTTL #when we reach 0 we skip the replicating block
replicatestart #a label for control flow
getrandomtarget
udpconnectrandom 4000#open a socket to the target from port 4000
sendmem selfloc #send the worm to the next host
udpclose #close the socket
replicateend #loop if necessary
payloadstart #a label for control flow

#nothing yet.

navlaadand???%)

Notes on Payload building

 Handling corruption

— Building a nop bridge
— Searching for clean copies of payload in memory

e Shortcuts

— Delaying (or not doing) decoding

* Special purpose compiler helps us write filter-passing
shellcode

— Delaying function table building

* Using existing import tables where necessary

Why use MOSDEF

 Having control of the entire compilation chain
allows for us to do fairly cool things such as:
— Create many versions of the same worm

— Write our worm 1n C, and have it automatically
mutated to avoid bad characters with certain filters

— Dynamically and programatically update our worm to
account for the conditions of the target network

* Feeds into our need to automate entire process with Al

Language Creation Goals

* Worm payloads are special purpose shellcodes, which are already
handled by MOSDEF's shellcode language compilers

* Goals of worm language

— Allow creation of tight shellcode

— Allow quick and easy modification both manually and
programatically

— Allow extensive flexibility to add new functionality

* Function pointer tables are automatically generated, etc

— Platform independence where possible

- “Make 1t easy to convert an exploit to a worm”

Additional Notes

e Porting an exploit to a self replicating program
can be assisted by automated vulnerability
analysis tools

- “Exploit generators™ such as “autosploit.py’” which
examine the environment of a vulnerability and
attempt to match exploit code to i1t by way of exploit
“fingerprint” generation

* You may pay a reliability price for having to
describe a vulnerability in the terms of a worm

Strategic Denial and Deception

* Mutating worms

* Hidden 1nitial infection methods
* Preselected targets

* Payloads and exfiltration

e Restrictions on host range and TTL

Potential Detection Methods

* Blackice or other host IDS
* Network traffic surges

* Lucky forensics experts

Blackice/HIDS can be disabled

However, it 1s difficult to do this quietly and in only a few
bytes of shellcode

Many HIDS configurations exist

— Because we create worms dynamically, we can also create
worms specific to our host network!

Pays to be prepared with special purpose shellcodes for your
target's network

— What software do they require all users to install?

HIDS are <till rare

Network surges

* Speed/Surge trade-off

* Distributed file transfers of large amounts of data
- Special purpose network protocols

e Can piggyback network's existing protocols
(SMB, etc)

— Have to avoid CheckPoint “ApplicationIntelligence”,
etc

Surgeless protocols

* Disk space 1s cheap, covert storage 1s almost
cheap

* Problem: Transfer all interesting files in a
protected area that has been pierced by our worm
back to our host, without knowing where our host
1S

* Solution: Send every interesting file to every host

Worm File Transfer Protocol 1

* Assuming a small set of files 1s interesting (has keyword and 1s a

spreadsheet)

* Files may exist on more than one host

— Transfer all files to every host I can talk to

* Can use simple size+data network transfer to copy
* File size and filename make good pseudo-hashes

* Ask permission first — drop connection if file already exists
or disk 1s almost full

* Eventually all the files that the worm was able to reach will exist
on all the hosts the worm was able to reach

| g~ ° ° P —— - ® a4 ~~n ° , - e - Py P

Other obvious file transfer options

e Exfil directly to an outside host:port via HTTP or
other protocol

— Can use network's proxies via autodiscovery
e Use email

e Etc

e All this 1s easier to build with MOSDEEF than by
hand!

Defeating forensics

* Mutate the worm to erase one of the payloads
after MaxTTL/2

— First phase worm will install backdoors or accomplish
mission

— Second phase worm will be analyzed by target's
forensics team and declared mostly harmless

MOSDEF
link with target
through Firewall

*Penetrates 1nitial web server in
DMZ

*Automatically conducts recon
and notices that CA Unicenter 1S
running (and we have Oday
prepared)

*Decides, based on covertness
level and “Al's” various decision
making alg's to launch a worm
to retrieve documents labeled
“Top Secret”

MOSDEF
link with target *Uses arp -a cache and other

through Firewall methods to fill a target list with
vulnerable targets

*Generates worm payload using
AO

*Uses MOSDEF/Other remote
execution engine to emulate a
worm and infects all targets
found

*Also uses MOSDEF/etc to
emulate the worm's transfer
protocol to collect files

*Cleans up Solaris box, and
leaves when done

Conclusion

Worms can be useful tools and should be exploited to
provide a reaction capability that outstrips a network
defender's ability to adjust and compensate

You can only model what you understand — we hope to get
some benefit out of network effects we don't understand yet

Automated defenses require automated attack platforms

Multi-exploit and multi-platform worms are even more
useful and may require their own special purpose languages —
subclassed from AOQ itself

Acknowledgments

* Authors of worms everywhere
* Homies 1n Iraq (phOOdy, et. al.)
e Justine Aitel

e #convers, esp Oded for reliable heap overtlow
discussions

e Halvar Flake

