Nematodes — Beneficial
Worms

V1.0
Original: September 2005

Dave Aitel
dave@immunitysec.com



Who am I?
* NSA->@stake->Immunity

 Currently Researcher: Immunity, Inc.

- Consulting (product assessments)
- Immunity CANVAS

- Immunity Partner's Program

- Training

- Ongoing research in exploits and software
vulnerabilities



What is a worm?

 Any self propelled replicating program

e Commonly used for nefarious purposes
such as overloading the Internet and
inhibiting the valid distribution of porn



What is a Nematode

e A controlled worm that can be used for
beneficial purposes

- Making your network self protecting!

e “Nematode” is a phylum of primitive
worm-like organisms often used to get
rid of other pests



Hypothesis

* In the near future, many organizations
will use nematodes to lower the costs
of securing their networks

- ISPs
- Governments
- Large companies

e ROI will overcome unreasonable fear



Agenda

e Reasons to create a nematode

* Protocols for controlling your
nematode

 Automatically creating your nematode
from vulnerability information

e Other uses for nematodes



[ want to secure my network. Today, this is very
expensive!

* Hard problems, like security, require novel and
difficult approaches, like controlled worms

 Other hard problems are also solvable with
WOrms

- Distributed searching
- Systems management on a large scale



jungle, not a
tundra

Complex, dynamic network architectures are
the standard

These often evolve from simple flat networks as
a company grows

Networks are not documented - asset
management is an expensive problem to solve

Current defenses are still weak and expensive!

Dream: But what if my network was self
discovering, without the need to install
monitoring stations all over the place?




as asset management tools

 Right now, nessus-like scanner stations are
dotted all over your network landscape, peering
into the unknown like telescopes into a dark
night

* As soon as you have finished your Nessus-like
scan, it is out of date and you must begin again

* Nessus-like modules may generate false
positives

 Exploits can be written nearly as quickly as
Nessus signatures!



Network Segmentation

* Any network segmentation adds to the
costs of a solution that requires direct
visibility across the network

e It is hard to get our scanners close to
our targets

e Machines that pop in and out of the
network remain a false negative issue
and are commonly cited as problem
vectors



Other potentil nematode
features

 Searching entire network, without
regard to network architecture

- Worms make great filters: I want the latest sales
spreadsheet that anyone on my team has done!
Go get it.

* Moving intelligence across the network



Exploits vs. Worms

e A worm does not need an exploit

- testvulnl.exe worm is a good replacement for
any installed management agent

* Minus authentication, of course.
- Even very polished exploits fail sometimes

* Some exploits may be very difficult to write a
worm for!

- These are more rare than people like to
pretend



Establishing legal mandate

e Mandate to attack a machine differs from
exploits to nematodes

- This is the largest part of the “fear factor”

* There are plenty of places where running
exploits is perfectly legal and desirable

- Your own network

- Someone else's where you have
permission

e “Penetration testing”



Exploits have easy mandates

* Reasonable knowledge where your target is (it
is on the same network you are allowed to
attack, for example)

 Slow scale of penetration allows for manual
verification at every step

» Mistakes do happen, but are generally of low
consequence due to human interaction

* Logging is easy to do



harder to establish clear
mandate

* Rely on outside indicators to find out where
they are running

* Rely on outside indicators to find out where
they are allowed to attack

 Logging is quite difficult (distributed problem)



Haltway poit: Explot
SCanners

e Forip in
range(192.168.1.0,192.168.1.255):
- ret=exploit(ip)
- If ret:

e ret.patch()
e ret.reboot()



Scanners are not pertect...

 Scanners and automated exploit
technology save money by solving the
asset management problem

* You have a clear mandate on your own
network!

 Can have large and complex support
structures

- Specialized recon tools
- large shellcode is possible



Scanner Problems

e Multiple networks require
multiple scanners

- Administrators now have
an impetus to avoid
network segmentation : <

e Scanners absorb bandwidth
for discovery

- (Even with a switch's
help)

* Hosts are constantly
popping up (time disparities)




The solution: Nematodes

* Every host is a scanner

* Every host can generate scanners by
automatically deploying nematodes

e Hosts that are secure or unreachable,
are not a problem!

 Scans that are not relevant just die out



Problems with nematodes

* Worm are really hard to write

* Worms also use large amounts of
network bandwidth

- Need smart algorithms to counteract this

 But smart algorithms make for very large
worms!

* Worms are harder to target and
control — fear factor ensures

- Need to ensure legal access



Validating mandate on a
nematode's target

* [s target on a white-listed network

- Hard to do with private address spaces
e 2 factor authentication method

* Does target run our custom worm
management agent ?

- Friend/Foe system



Nematokens

* Nematoken server should only respond to
requests from networks we are allowed to
attack from/to

- Ex: Does al192.168.1.2.mytokenserver.com
exist?
* Yes: ok to attack it.

* DNS is a good one, but there are plenty of other
options



Nematode Implementation

* Every nematode implementation may
differ

* Immunity's goal is to make our
nematode implementation flexible,
such that it can be deployed on the tly

- Something dynamically created but
reliably controllable

- Operates entirely in memory
- single shot (no callbacks)



Automatically enerating
Beneficial Worms

*How do we get from vulnerabilities
to usable beneficial worms?
* Vulnerability
 Python Exploit
* Nematode Intermediate Language
* Nematode Test Framework
* Nematode payload deployed




Our Problem Space

o

CANVAS

Nematode.py



Exploit frameworks are ood
for nematode development

* Ideal framework has following
characteristics

- Completely written in Python
* Including many network protocol libraries
- Many exploits

- Exploits are written to an API, rather than
haphazardly

- Built-in assembler and compiler!



Example Exploit in Python

* Class with simple member functions

- Makesploit() - Creates the buffer to send
to the target

- Nops() - generates nops

- Stroverwrite() - Python version of memcpy
- connect to host() - Connects to the target
- Runonce() -Sends the buffer



Our Nematode Work-flow




Nematode Iermedite
Language (NIL)

 Specialized and simplified “assembly
for worms”

 Useful for converting exploits into
Nematodes quickly and easily

 Exploits can be written to NIL directly

- This is probably not a good idea, but for
complex worms hand-modification may be
necessary



—

Automaticall eneratng
NIL

 Python is introspective/reflective

- We simply override our internal API to
generate a NIL file instead of running the
attack!

e exploit.nops=self.nops

e exploit.run()



J/nematode.py demosploit

 As simple as running one python script
which loads the module, replaces the
functions, and calls runonce()

* <see amazing demo now>



Demosploit -> NIL

nops 5000

stroverwrite %B8%DD%FF%BF 10306

stroverwrite % CCtheshellcode 800

startloop

connect random host 5151

Ooh, ahhhh...
sendall
closesock

endloop



NIL -> Test phase

* nemassemble.py will interpret NIL as
an aid to testing

e If the exploit still works, we're good to
go



Building our final payload

* Go from NIL to assembly language

- This requires a specialized NIL compiler
with hand written assembly

* Inject assembly language into test
framework

* Watch it go!



Demos are fun

e <See amazing assembly code now>

e <See amazing worm demonstration
now>



NIL Assembler

o nem=nem linux X86()
Wa I.lt t.O nem.addAttr("nem prelude",None)
minimize SPace pem.addAttr("nops",[5000])
. [ nem.addAttr("stroverwrite",["%27 %8 3
° Need. a unified nem.addAttr("stroverwrite",[shellcodes
function table nem.addAttr("startloop”,None)
: nem.addAttr("connect random host",[:
* Need to avoid nem.addAttr("sendall",None)
badcharacters nem.addAttr("closesock",None)
nem.addAttr("endloop”,None)
e Also need to be data=nem.get()

flexible



Results for Nematode v0.1

 Linux demosploit (no bad chars)

- <5 minutes from exploit to worm
- Worm is <280 bytes

* Currently no real payload other than
replication

— Just like most worms!
- Simple incrementing scanner

e Will use /dev/urandom in v0.2



- Prelude

Decoder

Body

Function
table

[ State table

Nematode Assembler Fture
Features

e Select from
multiple
decoder/body
parts to account
for different bad
character lists

- Or use automatic
assembler
heuristics



Future nematode problems

* MSRPC creates interesting issues with
regards to constructing our attack
string

- Ideally we'd use native API

e This requires a working minimized typedef
library

- Which is totally doable.
* Doing multi-stage worms is also
possible, but less reliable due to NAT



Witty made people cry

* Worm shocked people with rapid (48h)
deployment atter announcement

 Witty is nearly identical to this sort of
simple stack overtlow bug

- Need to reconsider whether worm
creation tools are already in wide use...

- A good attacker can reliably create a
worm that appears before your half-baked
IDS signature does



Worms can be fast

* Signature based worm protection is
only useful as a diagnostic, not as a
prophylactic

* Some interesting work has been done
in automatically detecting worm
signatures

- Polygraph: Automatically Generating
Signatures for Polymorphic Worms, James
Newsome, Brad Karp, and Dawn Song.



But not all rms ar
Nematodes — how do we
control this thing?

* We can now dynamically and quickly
create worms — now what?

e Controllable worms (nematodes) need

- State
- Payload
- More complex network protocols



Adding state to the equation

» Append state section to header or
footer of payload

- Need to encode it, potentially

* Have nematode body modify state
section before sending off to next
target



Attacking In Scpe Networks
Only

 Options: Nematoken/Whitelist

- Need not a whitelist, but a whitegraph!
e 192.168.1.* is fair game

- But only if attacked from 192.68.2.*

 Simple graph walking algorithm is
necessary - in shellcode



Whitegraph implementation

e Need to store where we came from,
and match against the graph to
determine where we are allowed to go
next

- Need wildcards in the graph

- This is a complex parsing problem to have
to do in shellcode

* Also potentially quite usetul for
avoiding network telescopes



Payload

 Payload may be
- Install management agent
- Install patch and reboot
- Report to central server
- Whatever you can think up

* Dynamically mix and match!



Immunity VisualSploit

e Initial proof of concept 4™ generation
language for exploit development

- Entirely visual, no programming needed

- Defines exploit buffers and protocols in
terms of blocks

- Written by Damian Gomez



: Immunity VisualS ploit

File Help
+ %E "c,;f w;::“:re g+ lg
[ssinen) (sreine) (Nepsted) ((Jump ) (DwoRp) [(Steucone)

cPacket 1 Info #ploit Packek 1

conneck(127.0,0.1:515) FOu 1 MNopsled #1

send{xPacket 1) FO: 1 Size: 47 Yalue: A

Jurnp #1
Jurnp bay Mopsled #2
offset: &

DWORD 21
Walue: OxSedeSdbe
bype: Litkle Endian

Mopsled #2
Sizer 20 Yalue: A

shelcode #1
Windzshellcode
Size: 739

a0 x0a)x0de?

B - =
Recw 4o commect  2EVMD

I debug |explu:uit log | connection log
|




Graph language benefits

* Immunity VisualSploit outputs
currently to Python (CANVAS API)

 Rapid application development for
exploits, fuzzers, or simple protocols

 Easy transtformation into other
languages such as NIL

 Easy protocol mutation to test IDS
evasion



Conclusion

 Solving the “Am I allowed to attack
this” problem is not impossible for a
nematode system

e Frameworked exploits are essential to
do automated development of
nematodes

 Generalized technique is completely
cross platform



Resources

* Worm Blog run by Jose Nazario

e WORM 2005 academic conference at
George Mason

* Journal of Computer Virology



Questions?

e Did we answer more than we asked?



