
Microsoft Windows: A lower Total Cost of
0wnership

August 12, 2004

Table of Contents
Introduction..3
Executive Summary..3
Immunity's Methodology...4
Vulnerability Detection...4

Portability of common exploit development tools..............................4
Availability of Fish...5
Time to 0day..5

Exploit Development...5
Kernel-level defenses..5

Executable Defenses...6
Compiler defenses...6
Library Defenses...6

Shellcode, MOSDEF and other Exploit Infrastructure.......................7
Static Addresses..7

Attack Execution...7
Patch Maintenance..7
User Error...8

Summary...8
Appendix A – MOSDEF examples...9

A Win32 popen() fragment in MOSDEF...9
A Linux TCP Portscanner in MOSDEF..10

Introduction

Microsoft has long asked third party analysts for accurate
assessments of the total cost of ownership of Microsoft Windows
deployments, especially against the Linux deployments commonly
going into all segments of the market. However, Immunity, Inc. as a
third party assessment provider has, until now, not done a thorough
analysis, using Immunity proprietary data to tell the true story about
the costs of Open Source.

Other sources of 3rd party information can be found here:
http://www.microsoft.com/mscorp/facts/default.asp

The point of contact for this paper is Dave Aitel, Vice President of
Media Relations, Immunity, Inc. He can be reached at
dave@immunitysec.com. Further information on Immunity, Inc. is
available at http://www.immunitysec.com .

Executive Summary
Based on our analysis, Microsoft Windows has one half the Total Cost
of 0wnership (TC0) of modern Fedora Core Linux based technologies.

Immunity's Methodology
Immunity has four major services: Training on exploit development
and vulnerability analysis, Application Security Consulting, the
CANVAS assessment product, and the Immunity Vulnerability Sharing
Club. In each of these, the costs to penetrate (0wn) systems based on
Microsoft Windows Technologies was compared to the costs against a
modern Linux system. In general there are three aspects to 0wning a
system. These three things, Vulnerability Detection, Exploit
Development, and Attack Execution, were used by Immunity to
determine the costs to 0wn the different operating systems in
configurations encountered during Immunity engagements. As
Immunity is not in the rootkit (www.rootkit.com) writing business, this
paper does not cover the costs of maintaining 0wnership over a given
OS.

Vulnerability Detection
There are several factors that affect how difficult it is to find
vulnerabilities on a target platform. Some of these are listed below.
Immunity's judgments are drawn from our current collection of
remote 0day in the VSC, countless 0day in custom applications for
Immunity Consulting customers across many different operating
systems and over 80 remote exploits in CANVAS.

Portability of common exploit development tools

IDA-Pro, the premier disassembler and reverse engineering tool (a
database and a disassembler together make for a powerful
combination) is able to disassemble both Linux and Windows binaries,
but only runs on Windows. A Linux version is, however, rumored to be
in the works.

PDB (Python Debugger), Immunity's newest tool in the armory, is
available only for Windows (although the client is available on both
Linux and Windows). This tool allows for many advanced scripts to be
run, widely automating the exploit development process.

Ollydbg (Visual Debugger), is far superior to GDB in many ways
needed for exploit development. In addition, windbg and Softice
provide valuable options for debugging at the kernel and user level.

The TC0 advantage is clearly obvious for the Windows platform.

Availability of Fish

Finding a vulnerability is like finding a fish. If the pond is overfished,
it's harder to find them. Hackers are rather evenly split between
running Linux and running Mac OSX. As much as few professional
NASCAR drivers drive Dodge Neons, a negligible amount of skilled
hackers use Windows as their primary OS.

Not to mention, many Win32 fish are given out for free by Microsoft
when releasing patches. (See http://sabre-security.com/ for BinDiff).

Here, there can be only one option. Even extremely modern versions
of Windows have a TC0 much lower than older Linuxes.

Time to 0day

Immunity's team is typically tasked with three major fronts at a time.
One front, to develop old exploits for CANVAS, is ongoing. The
second, to develop new infrastructure for CANVAS. The third, to
assess major system components of various operating systems and
products to discover new vulnerabilities. The time between Immunity
management requesting a vulnerability against a particular operating
system and one of Immunity's researchers delivering a suitable
vulnerability is described as the “Time to 0day”. This TT0 provides a
convenient metric for the process of vulnerability discovery under
different operating systems.

Operating System Number of 0day Average Time

Mac OS X 3 1 hour

Windows
2000/XP/2003 4

3 days

Linux (FC2) 3 6 days

As clearly demonstrated, other than the toy OS Mac OS X, Windows
has the lowest TC0 on the market.

Exploit Development
There are many levels of defenses in a modern operating system. Each
of these has implementation weaknesses and strengths. Overall,
Windows has a large advantage in TC0 as demonstrated by the
following sections.

Kernel-level defenses

Execshield comes by default with Fedora Core 1 and 2, a superior

protection, PaX, can be installed at no cost. Notably, this protection
does not prevent Linux from being 0wned when a third party program
is installed. Unreal Tournament is a good example of a program which
has an executable stack when installed even on Fedora Core 2. With
PaX installed, even the kernel has moderate levels of protection
against standard buffer overflow attacks.

PaX is a great example of a kernel level protection done by a third
party. In the Open Source community, protections compete by their
merit. In the Windows community, it is impossible to have a good
kernel level protection implemented by a vendor other than Microsoft,
which allows for greater manageability by both users and hackers.

Hence, out of the box Windows has no protection of this nature at all.
Windows XP SP2 plans to support W^X style protection (somewhat
weaker than Execshield!) but only with hardware support1. Currently,
this means that N^X is not available, and it most likely will not be
widely deployed for some time on the Windows platform.

In addition, kernel layer segmentation provided by chroot() can often
be a nightmare when exploiting Linux. While group policies and other
complex ACLs can sometimes be deployed on the Windows Platform,
this is comparatively rare, and often, due to sheer complexity, easily
worked around.

The TC0 advantage is clearly for the Windows Platform.

Executable Defenses

Various options assigned to the compiler and system libraries can
make a big difference in platform exploitability, and hence, TC0. These
are detailed below.

Compiler defenses

Both Linux and Windows come with stack canaries built into their
compilers. In Linux, this is via Propolice, and in Windows, via /gS.
Both are reasonably equivalent, except that Win32 processes have a
overly complex exception management procedure, which tends to
make overcoming such protections a lot easier than on Linux.
Windows binaries currently undergo some advanced vulnerability
detection routines (prefix and prefast) as well. These measures are
currently ineffective but may raise the TC0 of Windows in the future.

1 Software support is limited and given in some small detail at the URL below. It is
not general purpose protection at the level of PaX or ExecSheild.
http://www.microsoft.com/technet/prodtechnol/winxppro/maintain/sp2mempr.msp
x

Library Defenses

Modern Windows (as of XP SP2) contains heap overflow protection.
This raises its TC0 dramatically, but is not yet in production and has
not been considered for this survey.

Shellcode, MOSDEF and other Exploit Infrastructure

Immunity CANVAS employs an advanced exploit payload system
known as MOSDEF. This system allows for “C remoting” across host
boundaries. For example, after you attack a system running Fedora
Core 2, you can then have the MOSDEF system run a TCP port
scanner module on that target and send you back the results. It does
this by compiling a C proglet into shellcode, and having it executed in
the remote systems' process space.

So one of the major factors when building CANVAS for each platform
was “How much does it cost to build MOSDEF for that platform?” This
is complicated by the costs of MOSDEF that are spread across both
platforms. For example, the C compiler and the X86 assembler. So one
must do comparisons based on the costs of creating platform specific
changes. This is mostly relegated to the initial stages of an exploit's
shellcode and to special effects.

On Linux, system calls go directly to the kernel, but on Windows, you
must first traverse user-land level libraries such as kernel32.dll. This
major architectural difference has conflicting results. At first, it makes
things much harder, as the process heaps must be cleaned up before
you can proceed to using socket calls and establishing outbound
connections. However, once this is done, the full Win32 API is then
available to you, and you can use it without reimplementing libc, as
you have to do in Linux. This makes post-exploit development much
easier, as shown by the following code fragment in Appendix A.

Static Addresses

A modern Linux has few static addresses. Windows, on the other
hand, has thousands of different global variables an exploit developer
can use to exploit a target. The PEB is just one example.

Attack Execution
There are quite a few places where running your attacks against a
target can be a difficult and painful experience. Remote
manageability, patching, and other areas are places where Windows
truly shines. For these reasons, we find that the Windows advantage

in Total Cost of 0wnership extends to every level of our testing.

Patch Maintenance

Both Fedora Core and Windows systems include automatic patch
updating. However, only Fedora Core supports non core OS products,
such as image manipulation programs. As such, Fedora Core is more
likely to be updated than Windows systems.

User Error

Few Windows users can identify the purpose of all the processes
running on their system. Even fewer know what tool to use to discover
which processes are listening on which ports. In Linux, this is built
into the netstat program. It's unlikely a Windows user will even know
how to determine which users are able to log in remotely to their
system. Adding new capabilities to users is a common and entirely
effective way to backdoor a Windows system.

Summary
Immunity's findings clearly show that the best platform for your
targets to be running is Microsoft Windows, allowing you unparalleled
value for their dollar. This result reinforces the fact that its important
to consider more than just licensing fees when your targets choose
their OS. Indeed, a variety of factors go into their choice, and over
time, Windows has demonstrated itself to be the top contender in the,
in both the server and the desktop space for Total Cost of 0wnership.

Appendix A – MOSDEF examples

A Win32 popen() fragment in MOSDEF

 vars={}
 vars["command"]=command
 vars["cmdexe"]=cmdexe
 vars["stdin"]=hChildStdinRd
 vars["stdout"]=hChildStdoutWr
 code="""
 #import "local","sendint" as "sendint"
 #import "remote","kernel32.dll|GetStartupInfoA" as
"getstartupinfoa"
 #import "remote","kernel32.dll|CreateProcessA" as
"createprocessa"
 #import "string","cmdexe" as "cmdexe"
 #import "string","command" as "command"
 #import "local", "memset" as "memset"
 #import "int", "stdin" as "stdin"
 #import "int", "stdout" as "stdout"
 //#import "local", "debug" as "debug"

 struct STARTUPINFO {
 int cb;
 char * lpReserved;
 char * lpDesktop;
 char * lpTitle;
 int dwX;
 int dwY;
 int dwXSize;
 int dwYSize;
 int dwXCountChars;
 int dwYCountChars;
 int dwFillAttribute;
 int dwFlags;
 short int wShowWindow;
 short int cbReserved2;
 int * lpReserved2;
 int hStdInput;
 int hStdOutput;
 int hStdError;
 };

 void main() {
 struct STARTUPINFO si;
 int inherithandles;
 int i;
 char pi[32];

 memset(pi,0,16);
 inherithandles=1;
 getstartupinfoa(&si);

 si.dwFlags=0x0101; //STARTF_USESTDHANDLES |
STARTF_USESHOWWINDOW
 si.wShowWindow=0;
 si.hStdInput=stdin;
 si.hStdOutput=stdout;
 si.hStdError=stdout;
 i=createprocessa
(cmdexe,command,0,0,inherithandles,0,0,0,&si,pi);
 sendint(i);
 }

 """
 request=self.compile(code,vars)
 self.sendrequest(request)
 ret=self.readint()

A Linux TCP Portscanner in MOSDEF

 vars={}
 vars["startip"]=startip
 vars["numberofips"]=numberofips
 vars["AF_INET"]=AF_INET
 vars["SOCK_STREAM"]=SOCK_STREAM
 vars["startport"]=startport
 vars["endport"]=endport

 code="""
 #import "local", "connect" as "connect"
 #import "local", "close" as "close"
 #import "local", "socket" as "socket"
 #import "local", "sendint" as "sendint"
 #import "local", "htons" as "htons"
 #import "local", "htonl" as "htonl"
 #import "local", "debug" as "debug"
 #import "int", "startip" as "startip"
 #import "int", "startport" as "startport"
 #import "int", "endport" as "endport"
 #import "int", "numberofips" as "numberofips"
 #import "int", "AF_INET" as "AF_INET"
 #import "int", "SOCK_STREAM" as "SOCK_STREAM"
 #include "socket.h"

 void main()
 {
 int currentport;
 int sockfd;
 int fd;
 int doneips;
 int currentip;

 struct sockaddr_in serv_addr;

 serv_addr.family=AF_INET; //af_inet
 currentip=startip;
 doneips=0;

 while (doneips<numberofips) {
 //FOR EACH IP...
 doneips=doneips+1;
 serv_addr.addr=htonl(currentip);
 currentport=startport;
 while (currentport<endport) {
 //FOR EACH PORT
 //debug();
 sockfd=socket(AF_INET,SOCK_STREAM,0);
 //debug();
 serv_addr.port=htons(currentport);
 if (connect(sockfd,&serv_addr,16)==0) {
 //sendint(23);
 sendint(currentport);
 }
 //debug();
 //sendint(22);
 close(sockfd);
 //sendint(20);
 currentport=currentport+1;
 //sendint(21);

 }
 currentip=currentip+1;
 }
 sendint(0xffffffff);
 }
 """
 request=self.compile(code,vars)
 self.sendrequest(request)

 port=0
 openports=[]
 while port!=-1:
 port=self.readint()
 if port!=-1:
 openports.append(port)
 return openports

